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Abstract

The three-dimensional problem of admixture diffusion is considered in a semispace of random geometrical con-

figuration composed of N þ 1 phases under action of a constant source on the body surface. The used approach for

description of admixture transfer in a random nonhomogeneous body allows for both jump discontinuities of a dif-

fusion coefficient on interphases and equally probable distribution of spherical inclusions in the body. Admixture

concentration averaged over the ensemble of phase configurations has been obtained under consideration of medium

nonhomogeneities as internal sources.

� 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

Nonhomogeneities of a local structure, in particular

in the form of inclusions of another material, affect es-

sentially on admixture mass transfer processes in real

media. As a rule, specific disposition of such inclusions is

unknown, however we know accurately enough their

physical–mechanical properties, for example, density

and diffusion coefficient of admixture particles, and their

form (layer, cylinder, sphere, etc.).

Description of influence of single inclusions on dif-

fusion process can be made on the basis of solutions of

classical contact and initial-boundary value problems of

mathematical physics [1–3]. At a large number of such

nonhomogeneities, homogenization methods [4,5] are

used or corresponding effective diffusion coefficients are

introduced [6–8]. If we can suppose that macroscopically

large quantity of particles composing inclusions, occur

within a physically small element of a body then con-

tinual approaches can be applicable for mass transfer

description [9–11].

At the same time some researchers [7,8] noted that

application of effective diffusion coefficients describe

uncompletely features of admixture mass transfer, and

the conditions of satisfiability of continual models do

not hold always.

Accounting the influence of stochastically disposed

inclusions on mass transfer with sufficient difference of

their physical characteristics (density and diffusion co-

efficients) from parameters of a basic material, can be

done by using generalized functions, Green function for

an effective medium and averaging over the ensemble of

nonhomogeneity configurations [12]. Such an approach

was applied for description of diffusive process in a

stratified semispace where the volumetric fraction of

inclusions is small [13] and commensurable the basic

material [12] and also in a stratified layer [14]. In the

latter paper admixture concentrations were obtained at

equally probable and beta distributions of inclusions in

a body (a priory information). In the paper [15] it was

considered diffusion in a multiphase stratified semispace

under random configuration of sublayers.

The purpose of this work is generalization of the

proposed approach for studing diffusive processes in a

semispace with randomly disposed spherical inclusions

of distinct materials.
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2. Subject of inquiry and problem formulation

We study admixture particle transport in a dispersed

isotropic semispace of multiphase random nonhomo-

geneous structure of material. The body is composed of

N þ 1 phases with distinct densities: matrix (the basic

phase, marked by the index 0) and spherical inclusions

of N kinds that are disposed randomly in the body space

(see Fig. 1). Admixture diffusion coefficients can differ

substantially in these phases. We assume that each phase

is distributed by equally probable distribution in the

body region. We consider a case where a volumetric

fraction v0 of the basic phase is much greater then the

others: v0 � vj, j ¼ 1; 2; . . . ;N . If the body volume is

denoted V then

[nj
i¼1

V ðjÞ
i ¼ V ðjÞ;

[N
j¼0

V ðjÞ ¼ V ; ð1Þ

where V ðjÞ is a volume of j-phase; V ðjÞ
i is a volume of an

inclusion i of j-phase, i is the inclusion number,

i ¼ 1; 2; . . . ; nj, nj is a number of j-kind inclusions. And

we assume that the body density qðrÞ and admixture

diffusion coefficient DðrÞ are constant in the space of

each phase (r is a radius-vector of a current point).

Let us introduce into consideration the random op-

erator gijðrÞ that depends on the phase configuration and

does not depend on their physical characteristics. It is

defined such as

gijðrÞ ¼
1; r 2 V ðjÞ

i ;

0; r 62 V ðjÞ
i ;

� XN
j¼0

Xnj
i¼1

gijðrÞ ¼ 1: ð2Þ

Then the diffusion coefficient DðrÞ and the body density

qðrÞ are presented by the random operator (2) as follows

DðrÞ ¼
XN
j¼0

Xnj
i¼1

DjgijðrÞ; qðrÞ ¼
XN
j¼0

Xnj
i¼1

qjgijðrÞ; ð3Þ

where Dj, qj denote values of respective coefficients in

the j-phase.
Using the approach of generalized functions [3,16]

admixture diffusion in a random nonhomogeneous

multiphase body is described in the form:

Lðr; tÞcðr; tÞ � �qqðrÞ ocðr; tÞ
ot

	r½DðrÞrcðr; tÞ� ¼ 0: ð4Þ

Here cðr; tÞ denotes the field of admixture concen-

tration in the body, �qqðrÞ ¼ qðrÞ=q0 is a random nor-

malized density, r ¼ iðo=oxÞ þ jðo=oyÞ þ kðo=ozÞ; x, y, z
are the space coordinates, t is time, i, j, k are unit vectors

of Cartesian coordinates.

Let a constant mass source act on the boundary of

the semispace referred to rectangular coordinates

cðr; tÞjz¼0 ¼ c� � const;

another boundary conditions and initial one are also

given

cðr; tÞjz!1 ¼ 0; cðr; tÞjx;y!�1 6K < 1; cðr; tÞjt¼0 ¼ 0:

ð5Þ

Substitute coefficient representation (3) into Eq. (4) and

allow for that on interphases [16]

XN
j¼0

Xnj
i¼1

r DjgijðrÞ
� �

¼
XN
j¼0

Xnj
i¼1

½Dj�Cd r
�

	 rC
ij

�
;

where ½Dj�C denotes a jump of the diffusion coefficient on

the boundary of the inclusion ðV ðjÞ
i Þ, dðrÞ is Dirac delta-

function, rC
ij is a radius-vector of points on the boundary

of subregion ðV ðjÞ
i Þ (random magnitude). Then we obtain

Lðr; tÞcðr; tÞ ¼
XN
j¼0

Xnj
i¼1

Lijðr; tÞcðr; tÞ ¼ 0; ð6Þ

where the random operator Lij is

Lijðr; tÞ ¼ �qqjgijðrÞ
o

ot
	 DjgijðrÞr2 	 Dj

� 	
C
dðr	 rCijÞr:

ð7Þ

3. Neyman series for the diffusion problem

In Eq. (6) add and subtract the deterministic operator

L0ðr; tÞ defined at all interval (t 2 ½0;1½; x; y 2� 	1;
1½; z 2 ½0;1½) as

L0ðr; tÞ � �qq0

o

ot
	 D0

o2

ox2



þ o2

oy2
þ o2

oz2

�
; ð8Þ

which coefficients are characteristics of the basic phase.

Then taking into account the condition (2) we have

L0ðr; tÞcðr; tÞ ¼ Lsðr; tÞcðr; tÞ; ð9Þ

where the random operator Ls is obtained in the form

Lsðr; tÞ � L0 	 L

¼
XN
j¼1

ð�qq0 	 �qqjÞ
Xnj
i¼1

gijðrÞ
o

ot
	
XN
j¼1

ðD0 	 DjÞ

�
Xnj
i¼1

gijðrÞr2 þ
XN
j¼1

½Dj�C
Xnj
i¼1

dðr	 rCijÞr: ð10Þ

 

 

 

 

 

 

 

 
 

Fig. 1. One of possible realization of a body structure.
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We consider the right-hand side of Eq. (9) as a

source, i.e. medium nonhomogeneity is treated as in-

ternal sources. The solution of the initial-boundary

value problem (9) and (5) is found in the form of Ney-

man series [17].

Let c0ðr; tÞ is a deterministic field of the admixture

concentration in the body with characteristics �qq0, D0. It

satisfies the following homogeneous equation

L0ðr; tÞc0ðr; tÞ � �qq0

oc0
ot

	 D0

o2c0
ox2



þ o2c0

oy2
þ o2c0

@z2

�
¼ 0

and initial and boundary conditions (5). Taking into

account symmetry in a variable z, we have [2]

c0ðr; tÞ � c0ðz; tÞ ¼ c�erfc
ffiffiffiffiffi
�qq0

p
z

2
ffiffiffiffiffiffiffi
D0t

p

8<
:

9=
;: ð11Þ

Write Gðr; r0; t; t0Þ for unperturbed Green function

satisfying the diffusion equation for a point source

�qq0

oG
ot

	 D0

o2G
ox2



þ o2G

oy2
þ o2G

oz2

�
¼ dðt 	 t0Þdðr	 r0Þ ð12Þ

and initial and boundary conditions

Gðr; r0; t; t0Þ
��
t¼0

¼ 0; Gðr; r0; t; t0Þ
��
z¼0
z!1

¼ Gðr; r0; t; t0Þ
��
x;y!�1 ¼ 0: ð13Þ

Then the initial-boundary value problem (9) and (5) is

equivalent to the integro-differential equation for the

random field of the admixture concentration cðr; tÞ in a

N þ 1 phase semispace:

cðr; tÞ ¼ c0ðr; tÞ þ
Z t

0

Z
V
Gðr; r0; t; t0ÞLsðr0; t0Þcðr0; t0Þdr0 dt0;

ð14Þ

where Green function is

Gðr; r0; t; t0Þ ¼ 1

16�qq0

p�qq0

D0ðt 	 t0Þ

 !3=2

exp

(
	 �qq0

4D0ðt 	 t0Þ

� ðx
h

	 x0Þ2 þ y
�

	 y0
�2i)

� exp

("
	 �qq0ðz	 z0Þ2

4D0ðt 	 t0Þ

)

	 exp

(
	 �qq0ðzþ z0Þ2

4D0ðt 	 t0Þ

)#
: ð15Þ

Neyman series for the problem (9) and (5) is built by

iterating [17] the integro-differential equation (14). Let

us restrict to the first two terms in Neyman series. Then

we obtain

cðr; tÞ � cðz; tÞ þ
Z t

0

Z
V
Gðr; r0; t; t0Þ

�
XN
j¼1

Xnj
i¼1

gijðr0Þ ð�qq0



	 �qqjÞ

oc0
ot0

	 ðD0 	 DjÞ
o2c0
oz02

�
dr0 dt0 þ

XN
j¼1

½Dj�C

�
Z t

0

Z
V
Gðr; r0; t; t0Þ

Xnj
i¼1

dðr0 	 rC
ijÞ

oc0
oz0

dr0 dt0:

ð16Þ

Remark that the physical interpretation of the ex-

pansion into integro-differential series (16) is analogous

to one presented in the paper [12].

4. Averaging approximate solution

Let us average the expression for the random field of

concentration (16) over the ensemble of phase configu-

rations. We suppose that all phases are distributed with

equally probable distribution in the body. As c0ðz; tÞ is

a deterministic field, then c0ðz; tÞh iconf ¼ c0ðz; tÞ. Now

consider averaging two integral terms in (16). So far

as configuration of inclusions disposition is unknown

then random magnitudes are radius-vectors of inclu-

sion centres or interphase boundaries. And a random

function in the first integral of (16) is only gijðrÞ. So long

as

gijðr0Þ ¼
1; r0 2 V ðjÞ

i

0; r 62 V ðjÞ
i

(

¼
1; r0 	 rij

�� �� 2 ½0;Rj�
0; r0 	 rij

�� �� 62 ½0;Rj�

(
¼ gij r0

��� 	 rij
���; ð17Þ

where rij is a radius-vector of the centre of the inclusion

ðV ðjÞ
i Þ, Rj denotes a characteristic (mean) radius of the

j-kind inclusions, then

I1h iconf ¼
Z t

0

Z
V

G
XN
j¼1

q� oc0
ot0


(
	 D�

j

o2c0
oz02

�
:

� 1

V

Xnj
i¼1

Z
V

gijðr0Þdrij

)
dr0 dt0;

where q� ¼ �qq0 	 �qqj, D
�
j ¼ D0 	 Dj. Taking into account

(17) and the properties of function gijðjr0 	 rijjÞ we can

write

1

V

Xnj
i¼1

Z
V

gijðr0Þdrij ¼ vj z0

Rj
	 1

� �3
; z0 < 2Rj;

vj; z0 P 2Rj:

(
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Then we have

I1h iconf ¼
XN
j¼1

vj

Z t

0

Z 1

	1

Z 1

	1

Z 2Rj

0

Gðr;r0; t; t0Þ z0

Rj

� 
	1

�3

� q�oc0
ot0



	D�

j

o2c0
oz02

�
dz0 þ

Z 1

2Rj

Gðr;r0; t; t0Þ

� q�oc0
ot0



	D�

j

o2c0
oz02

�
dz0
!
dx0dy0dt0: ð18Þ

Consider averaging the second integral in (16). Since

function dðr0 	 rC
ijÞ depends only on a form and does not

depend on medium characteristics then the correlative

function between ½Dj�C and dðr0 	 rC
ijÞ equals zero. Then

Dj

� 	
C
dðr0

D
	 rCijÞ

E
conf

¼ h½Dj�Ciconf dðr0
D

	 rC
ijÞ
E
conf

: ð19Þ

At that

Dj

� 	
C

! "
conf

¼ Dm 	 Dj;

where Dm ¼
PN

k¼0 vkDk . Then the averaged second inte-

gral of (16) can be written in the form

I2h iconf ¼
XN
j¼1

Dm

�
	 Dj

� Z t

0

Z
V

Gðr; r0; t; t0Þ oc0
oz0

 

�
Xnj
i¼1

1

V

Z
V

dðr0 	 rC
ijÞdr

C
ij

!
dr0 dt0:

Allowing for the properties of Dirac delta-function we

obtain

Xnj
i¼1

1

V

Z
V

dðr0 	 rC
ijÞdr

C
ij ¼

3vj
8pR3

j
; z0 ¼ 0;

3vj
4pR3

j
; z0 > 0:

8<
: ð20Þ

Then taking into account (19) and (20) and definition of

an improper integral we obtain

I2h iconf ¼
XN
j¼1

ðDm 	 DjÞ
3vj
4pR3

j

Z t

0

Z 1

	1

Z 1

	1

1

2
G
oc0
oz0

����
z0¼0

�

þ
Z 1

þ0

G
oc0
oz0

dz0
$
dx0 dy0 dt0: ð21Þ

Because of Gjz0¼0 ¼ 0 and expressions (18) and (21) take

place, in consequence we obtain an expression for cal-

culating the approximate admixture concentration field

averaged over the ensemble of phase configurations in

the multiphase semispace with spherical inclusions in the

form

cðr; tÞh iconf

¼ c0ðz; tÞþ
XN
j¼1

vj

Z t

0

Z 1

	1

Z 1

	1

Z 2Rj

0

G
z0

Rj

� 
	1

�3

� q� oc0
ot0



	D�

j

o2c0
oz02

�
dz0 þ

Z 1

2Rj

G q� oc0
ot0




	D�
j

o2c0
oz02

�
dz0 þ

3 Dm	Dj

� �
4pR3

j

Z 1

þ0

G
oc0
oz0

dz0
!
dx0dy0dt0:

ð22Þ

The averaged field of admixture concentration in a

semispace with nonhomogeneous structure we find

substituting the corresponding expressions for Green

function (15) and the admixture concentration in ho-

mogeneous medium with characteristics of the basic

phase (11) into (22). And we also allow for that �qq0 � 1.

As a result we obtain

1

c�
cðr; tÞh iconf

¼
XN
j¼1

1

 "
þ vj

3ðDm 	 DjÞp2z
16R3

jD0

!
efrc

z
2
ffiffiffiffiffiffiffi
D0t

p
� $

þ vj
~qqp2z
2t

ffiffiffiffiffiffi
p
D0

r
þ vj

p2~qq
4t

Z t

0

1ffiffiffi
t0

p A2ðz; tÞ
�

� exp

�
	 z2

4D0ðt 	 t0Þ

$
dt0 þ exp

�
	 z2

4D0t

$

�
Z t

0

exp

�

	 1

t 	 t0
R2
j

t
t0



þ zt0

4D0t

�$

� A1ðz; tÞ sinh
Rjz

D0ðt 	 t0Þ

� $�

	 A3ðz; tÞ cosh
Rjz

D0ðt 	 t0Þ

� $�

þ A4ðz; tÞerf aðtÞ z
2

n o
	 Aþerf aðtÞ Rj

t
t0

hn
þ z
2

io
þ A	erf aðtÞ Rj

t
t0

hn
	 z
2

io�
dt0
$
; ð23Þ

where

~qq ¼ q� 	
D�

j

D0

; aðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t0

D0tðt 	 t0Þ

s
; A1ðz; tÞ ¼

zt
Rjt0

� �2

;

A2ðz; tÞ ¼ 2
ffiffiffiffiffi
A1

p
A1

"
þ 10

b22
R2
j
þ 3

#
; A3ðz; tÞ

¼
ffiffiffiffiffi
A1

p
A1

"
þ 10

b22
R2
j
þ 1

#
;

A4ðz; tÞ ¼
ffiffiffi
p

p 2b1
Rj

6

"
þ 3

2
b1 þ

2b22
R2
j

3

�
þ b1 3



þ 1

4
b1

��#
;

A�ðz; tÞ ¼
ffiffiffi
p

p b32
R3
j
b3=21

"
� 3

R2
j
b22b1 þ b3 � 1

#

þ 3b2
Rj

1

"
þ ð1þ b1Þ

2b22
R2
j
� b3

#
;

b1 ¼
z2t0

D0tðt 	 t0Þ ; b22 ¼
D0ðt 	 t0Þt0

t
; b3 ¼

3b2
Rj

ffiffiffiffiffi
b1

p
:

5. Results of numerical calculations

Figs. 2–5 illustrate the influence of nonhomogeneities

of material structure on distributions of the averaged
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admixture concentration in a semispace under action of

a constant mass source on the body boundary as an

example of a two-phase body. Numerical calculations

have been done in the dimensionless variables n ¼ z=z0
(z0 ¼ 1 m) and Fo ¼ D0t=z20 [2]. It is taken D1 ¼
D1=D0 ¼ 0:5, �qq1 ¼ 1:2, R1 ¼ R1=z0 ¼ 0:1, Fo ¼ 0:1, v1 ¼
0:2. The dimensionless coordinate n has been laid off as

abscissa, ratio of the averaged admixture concentration

to its value on the body boundary c� has been laid off as

ordinate. Concentration distributions are presented for

different values of Fourier number Fo ¼ 0:1, 0.25, 0.5,
curves 1–3, respectively, in Fig. 2. Here curves a are

given for the reduced diffusion coefficient D1 ¼ 1:5,
curves b correspond the value D1 ¼ 0:5. Fig. 3 demon-

strates the influence of the reduced diffusion coefficient

value on the distribution of the averaged concentration

field; here D1 ¼ 0:5, 0.7, 0.9, 1.1, 1.5, 1.8, curves 1–6,

respectively. Dependence of the admixture particle

concentration on characteristic radius of spherical in-

clusions is shown in Fig. 4; here R1 ¼ 0:1, 0.01, 0.003,
0.001, curves 1–4, respectively. Fig. 5 illustrates the be-

haviour of concentration field depending on the volu-

metric fraction of inclusions. Here curves 1–5

correspond values hcðn; FoÞi=c� under v1 ¼ 0:2, 0.15, 0.1,
0.05, 0.01.

Performed analysis of the obtained results shows that

distinctions in diffusive properties of randomly distrib-

uted phases can cause essential change of character of the

admixture concentration field in the body. At that in

quantitative description of mass transfer in such bodies it

is necessary to allow for explicitly both different values of

the admixture diffusion coefficient and its jump discon-

tinuities at interphase boundaries. Numerical calcula-

tions of the function under consideration show increase

of admixture concentration in subsurface domain of the

body with spherical inclusions (see Figs. 2–5). We sup-

pose that presence of inclusions with distinct diffusive

properties gives rise to concentration gain because of

Fig. 2. The averaged admixture concentration in different di-

mensionless instants.

Fig. 3. Dependence of the averaged concentration on the re-

duced diffusion coefficient D1.

Fig. 4. Influence of the characteristic radius of spherical in-

clusions on the averaged admixture concentration.

Fig. 5. The averaged admixture concentration for different

values of the inclusion volumetric fraction.

Y. Chaplia, O. Chernukha / International Journal of Heat and Mass Transfer 46 (2003) 3323–3328 3327



significant quantity of admixture particles can be accu-

mulated in a vicinity of interphase surfaces.

Let us note that the maximum value of the admixture

concentration increases and moves into body depth with

time (see Fig. 2). Changes in material characteristics

affect essentially on behaviour and values of the aver-

aged function of concentration in a nonhomogeneous

medium. For example, decreasing characteristic sphere

radius at the same volumetric fraction of inclusions (i.e.

quantity of spherical inclusions grows) causes appear-

ance of the second maximum of the averaged concen-

tration field in subsurface body domain (see Fig. 4).

Note that increase of difference between admixture dif-

fusion coefficients in the matrix and inclusions can cause

increase of the averaged concentration in the body (see

Fig. 3). Enlarging volumetric fraction of spherical in-

clusions causes the same effect (see Fig. 5).
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